Wednesday 30 March 2022

Essential papers / books.

Robinson, T., Catling, D. Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geosci 7, 12–15 (2014). https://doi.org/10.1038/ngeo2020
Shows planets with thick atmospheres have a tropopause at 0.1 bar; because at atmospheric pressures < 0.1 bar, transparency to thermal radiation allows short-wave heating (solar radiation) to dominate, creating a stratosphere. At higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. A common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0.1 bar tropopause.

The ratio (γ) of specific heats at constant pressure (cp) and volume (cv ), respectively, (γ = cp/cv ) sets the dry adiabatic lapse rate for the trophospheric adiabat, and is 1.4 for atmospheres dominated by diatomic gases.

No comments:

Post a Comment

There's no Greenhouse Effect

If an atmospheric greenhouse effect existed for CO₂, it will be possible to measure the ‘back-radiation’. It will show up in both the ther...